Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

Arterial dysfunction but maintained systemic blood pressure in cavin-1-deficient mice.

Författare

Summary, in English

Caveolae are omega-shaped plasma membrane micro-domains that are abundant in cells of the vascular system. Formation of caveolae depends on caveolin-1 and cavin-1 and lack of either protein leads to loss of caveolae. Mice with caveolin-1 deficiency have dysfunctional blood vessels, but whether absence of cavin-1 similarly leads to vascular dysfunction is not known. Here we addressed this hypothesis using small mesenteric arteries from cavin-1-deficient mice. Cavin-1-reporter staining was intense in mesenteric arteries, brain arterioles and elsewhere in the vascular system, with positive staining of both endothelial and smooth muscle cells. Arterial expression of cavin-1, -2 and -3 was reduced in knockout (KO) arteries as was expression of caveolin-1, -2 and -3. Caveolae were absent in the endothelial and smooth muscle layers of small mesenteric arteries as determined by electron microscopy. Arginase, a negative regulator of nitric oxide production, was elevated in cavin-1 deficient arteries as was contraction in response to the α1-adrenergic agonist cirazoline. Detailed assessment of vascular dimensions revealed increased media thickness and reduced distensibility, arguing that enhanced contraction was due to increased muscle mass. Contrasting with increased α1-adrenergic contraction, myogenic tone was essentially absent and this appeared to be due in part to increased nitric oxide production. Vasomotion was less frequent in the knock-out vessels. In keeping with the opposing influences on arterial resistance of increased agonist-induced contractility and reduced myogenic tone, arterial blood pressure was unchanged in vivo. We conclude that deficiency of cavin-1 affects the function of small arteries, but that opposing influences on arterial resistance balance each other such that systemic blood pressure in unstressed mice is well maintained.

Publiceringsår

2014

Språk

Engelska

Publikation/Tidskrift/Serie

PLoS ONE

Volym

9

Issue

3

Dokumenttyp

Artikel i tidskrift

Förlag

Public Library of Science (PLoS)

Ämne

  • Physiology
  • Cell and Molecular Biology

Status

Published

Forskningsgrupp

  • Cellular Biomechanics
  • Molecular Vascular Physiology

ISBN/ISSN/Övrigt

  • ISSN: 1932-6203