Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

DOC leaching from a coniferous forest floor: modeling a manipulation experiment

Författare

  • E Tipping
  • M Fröberg
  • D Berggren
  • J Mulder
  • Bo Bergkvist

Summary, in English

The DyDOC model simulates the C dynamics of forest soils, including the production and transport of dissolved organic matter (DOM), on the basis of soil hydrology, metabolic processes, and sorption reactions. The model recognizes three main pools of soil C: litter, substrate (an intermediate transformation product), and humic substances. The model was used to simulate the behavior of C in the 0 horizon of soil under a Norway spruce stand at Asa, Sweden, that had been subjected to experimental manipulations (addition and removal) of above-ground litter inputs and to removal of the Oi and Oe layers. Initially, the model was calibrated using results for the control plots and was able to reproduce the observed total soil C pool and C-14 content, DOC flux and DO C-14 content, and the pool of litter C, together with the assumed content of C in humic substances (20% of the total soil C), and the assumed distribution of DOC between hydrophilic and hydrophobic fractions. The constant describing DOC exchange between micro- and macropores was estimated from short-term variations in DOC concentration. When the calibrated model was used to predict the effects of litter and soil manipulations, it underestimated the additional DOC export (up to 33%) caused by litter addition, and underestimated the 22% reduction in DOC export caused by litter withdrawal. Therefore, an additional metabolic process, the direct conversion of litter to DOC, was added to the model. The addition of this process permitted reasonably accurate simulation of the results of the manipulation experiments, without affecting the goodness-of-fit in the model calibration. The results suggest that, under normal conditions, DOC exported from the Asa forest floor is a mixture of compounds derived from soil C pools with a range of residence times. Approximately equal amounts come from the litter pool (turnover time 4.6 yr), the substrate pool (26 yr), and the humic-substances pool (36 yr).

Publiceringsår

2005

Språk

Engelska

Sidor

316-324

Publikation/Tidskrift/Serie

Journal of Plant Nutrition and Soil Science

Volym

168

Issue

3

Dokumenttyp

Artikel i tidskrift

Förlag

John Wiley & Sons Inc.

Ämne

  • Ecology

Status

Published

ISBN/ISSN/Övrigt

  • ISSN: 1436-8730