Du är här

Frequency tracking of atrial fibrillation using hidden Markov models.

Publiceringsår: 2008
Språk: Engelska
Sidor: 502-511
Publikation/Tidskrift/Serie: IEEE Transactions on Biomedical Engineering
Volym: 55
Nummer: 2
Dokumenttyp: Artikel
Förlag: IEEE

Sammanfattning

A hidden Markov model (HMM) is employed to improve noise robustness when tracking the dominant frequency of atrial fibrillation (AF) in the electrocardiogram (ECG). Following QRST cancellation, a sequence of observed frequency states is obtained from the residual ECG, using the short-time Fourier transform. Based on the observed state sequence, the Viterbi algorithm retrieves the optimal state sequence by exploiting the state transition matrix, incorporating knowledge on AF characteristics, and the observation matrix, incorporating knowledge of the frequency estimation method and signal-to-noise ratio (SNR). The tracking method is evaluated with simulated AF signals to which noise, obtained from ECG recordings, has been added at different SNRs. The results show that the use of HMM improves performance considerably by reducing the rms error associated with frequency tracking: at 4-dB SNR, the rms error drops from 0.2 to 0.04 Hz.

Disputation

Nyckelord

  • Technology and Engineering

Övrigt

Published
Yes
  • Signal Processing
  • ISSN: 0018-9294

Box 117, 221 00 LUND
Telefon 046-222 00 00 (växel)
Telefax 046-222 47 20
lu [at] lu [dot] se

Fakturaadress: Box 188, 221 00 LUND
Organisationsnummer: 202100-3211
Om webbplatsen

LERU logo U21 logo