Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

Expression of zinc-positive cells and terminals in fetal neocortical homografts to adult rat depends on lesion type and rearing conditions

Författare

Summary, in English

Zinc-positive neurons and terminals, known to be associated with the glutamatergic projections in the brain, can be demonstrated by the histochemical Timm method and later modifications thereof. The adult rat neocortex contain a uniform lamination of zinc-positive cells with specific projections to, e.g., the striatum. We have previously reported that fetal neocortical grafts implanted in the adult rat neocortex combined with rearing in an enriched environment can improve behavioral functions and reduce the secondary atrophy of thalamus after cortex infarction in adult rats. In order to examine whether the expression of zinc positivity is ontogenetically inherent to neocortical neurons we grafted fetal neocortical tissue to aspiration or ischemic lesions of the frontoparietal neocortex of adult rats, followed by histochemical visualization of the vesicular zinc pool by selenite or sulfide. One further aim of the study was to elucidate to what extent the distribution of zinc-containing neurons and terminals in the grafts depended on rearing under different environmental conditions. The foremost finding of the present study was that the overall density of zinc-containing terminals in fetal cortical transplants placed in brain infarcts of adult spontaneously hypertensive rats is higher when the rats are reared in an enriched environment. Moreover, the presence and expression of zinc-positive neurons and terminals do not seem to be ontogenetically inherent to the cortical neurons as the fetal neocortical grafts placed in aspiration lesions contained no zinc-selenide-positive neurons and few or no zinc-selenide-positive terminals. The presence or expression of zinc-positive cells may thus be induced by ingrowth of fibers and terminals from the host brain as transplants placed in the ischemic lesions expressed both zinc-positive neurons and terminals.

Publiceringsår

2000

Språk

Engelska

Sidor

176-183

Publikation/Tidskrift/Serie

Experimental Neurology

Volym

164

Issue

1

Dokumenttyp

Artikel i tidskrift

Förlag

Elsevier

Ämne

  • Neurology

Status

Published

Forskningsgrupp

  • Brain Repair and Imaging in Neural Systems (BRAINS)

ISBN/ISSN/Övrigt

  • ISSN: 0014-4886