Meny

Du är här

A recruited protease is involved in catabolism of pyrimidines.

Författare:
  • Birgit Andersen
  • Stina Lundgren
  • Doreen Dobritzsch
  • Jure Piskur (Professor)
Publiceringsår: 2008
Språk: Engelska
Sidor: 243-250
Publikation/Tidskrift/Serie: Journal of molecular biology
Volym: 379
Nummer: 2
Dokumenttyp: Artikel
Förlag: Elsevier Ltd

Sammanfattning

In nature, the same biochemical reaction can be catalyzed by enzymes having fundamentally different folds, reaction mechanisms and origins. For example, the third step of the reductive catabolism of pyrimidines, the conversion of N-carbamyl-beta-alanine to beta-alanine, is catalyzed by two beta-alanine synthase (beta ASase, EC 3.5.1.6) subfamilies. We show that the "prototype" eukaryote beta ASases, such as those from Drosophila melanogaster and Arabidopsis thaliana, are relatively efficient in the conversion of N-carbamyl-beta A compared with a representative of fungal beta ASases, the yeast Saccharomyces kluyveri beta ASase, which has a high K(m) value (71 mM). S. kluyveri beta ASase is specifically inhibited by dipeptides and tripeptides, and the apparent K(i) value of glycyl-glycine is in the same range as the substrate K(m). We show that this inhibitor binds to the enzyme active center in a similar way as the substrate. The observed structural similarities and inhibition behavior, as well as the phylogenetic relationship, suggest that the ancestor of the fungal beta ASase was a protease that had modified its profession and become involved in the metabolism of nucleic acid precursors.

Disputation

Nyckelord

  • Biology and Life Sciences
  • nucleic acid precursors
  • β-alanine synthase
  • protease
  • structure– function relationship
  • protein evolution

Övriga

Published
Yes
  • ISSN: 1089-8638

Box 117, 221 00 LUND
Telefon 046-222 00 00 (växel)
Telefax 046-222 47 20
lu [at] lu [dot] se

Fakturaadress: Box 188, 221 00 LUND
Organisationsnummer: 202100-3211
Om webbplatsen