Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

Lovastatin Induces Relaxation and Inhibits L-Type Ca2+ Current in the Rat Basilar Artery.

Författare

Summary, in English

Statins inhibit cholesterol biosynthesis and protect against ischaemic stroke. It has become increasingly apparent that the beneficial effects of statin therapy may extend beyond lowering of serum cholesterol. The present study was done to explore possible pleiotropic statin effects at the level of the cerebral vascular smooth muscle. Lovastatin, lovastatin acid, simvastatin and pravastatin, were added to segments of the rat basilar artery and effects on contraction and Ca2+ handling were examined. Pravastatin had no effect on contraction. Simvastatin, lovastatin, and, to a lesser degree, lovastatin acid, caused relaxation (IC50=0.8, 1.9 and 22 μmol/l) of both intact and denuded arteries precontracted with 5-HT or high-K+. This effect was not reversed by mevalonate, suggesting that it was not related to cholesterol or isoprenoid metabolism. Relaxation was associated with a reduction of the intracellular Ca2+ concentration measured with Fura 2 and with a reduced Mn2+ quench rate, suggesting a direct effect on ion channels in the smooth muscle cell membrane. Current measurements in isolated and voltage clamped basilar artery muscle cells demonstrated that both lovastatin and lovastatin acid inhibit L-type Ca2+ current. We propose that lipophilicity is an important factor behind the effects of statins on vascular tone and that Ca2+ current inhibition is the likely mechanism of action.

Avdelning/ar

Publiceringsår

2003

Språk

Engelska

Sidor

128-134

Publikation/Tidskrift/Serie

Pharmacology and Toxicology

Volym

93

Issue

3

Dokumenttyp

Artikel i tidskrift

Förlag

Wiley-Blackwell

Ämne

  • Physiology

Status

Published

Forskningsgrupp

  • Vascular Physiology

ISBN/ISSN/Övrigt

  • ISSN: 1600-0773