Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

alpha-Lactalbumin unfolding is not sufficient to cause apoptosis, but is required for the conversion to HAMLET (human alpha-lactalbumin made lethal to tumor cells).

Författare

Summary, in English

HAMLET (human -lactalbumin made lethal to tumor cells) is a complex of human -lactalbumin and oleic acid (C18:1:9 cis) that kills tumor cells by an apoptosis-like mechanism. Previous studies have shown that a conformational change is required to form HAMLET from -lactalbumin, and that a partially unfolded conformation is maintained in the HAMLET complex. This study examined if unfolding of -lactalbumin is sufficient to induce cell death. We used the bovine -lactalbumin Ca2+ site mutant D87A, which is unable to bind Ca2+, and thus remains partially unfolded regardless of solvent conditions. The D87A mutant protein was found to be inactive in the apoptosis assay, but could readily be converted to a HAMLET-like complex in the presence of oleic acid. BAMLET (bovine -lactalbumin made lethal to tumor cells) and D87A-BAMLET complexes were both able to kill tumor cells. This activity was independent of the Ca2+site, as HAMLET maintained a high affinity for Ca2+ but D87A-BAMLET was active with no Ca2+ bound. We conclude that partial unfolding of -lactalbumin is necessary but not sufficient to trigger cell death, and that the activity of HAMLET is defined both by the protein and the lipid cofactor. Furthermore, a functional Ca2+-binding site is not required for conversion of -lactalbumin to the active complex or to cause cell death. This suggests that the lipid cofactor stabilizes the altered fold without interfering with the Ca2+site.

Ämne

  • Immunology in the medical area
  • Microbiology in the medical area

Status

Published

ISBN/ISSN/Övrigt

  • ISSN: 1469-896X