Du är här

Kinetics and stereochemistry of the Cellulomonas fimi beta-mannanase studied using H-1-NMR

Författare:
Publiceringsår: 2008
Språk: Engelska
Sidor: 86-95
Publikation/Tidskrift/Serie: Biocatalysis and Biotransformation
Volym: 26
Nummer: 1-2
Dokumenttyp: Artikel
Förlag: Taylor & Francis

Sammanfattning

Endo-1,4-beta-mannanases (beta-mannanases) randomly hydrolyse the mannosidic bonds within the main chain of various mannans and heteromannans. Some of these polysaccharides are hemicelluloses, a major part of the plant cell-wall. The beta-mannanases have been assigned to family 5 and 26 of the glycoside hydrolase clan A. This work presents a detailed kinetic analysis of the family 26 beta-mannanase CfMan26A from the soil-bacterium Cellulomonas fimi. The full-length enzyme consists of five modules: a family 26 catalytic module, an immunoglobulin-like module, a mannan-binding module, a surface layer homology-module and a module of unknown function. A truncated variant consisting of the catalytic module and the immunoglobulin-like module was used in these studies. The degradation of mannotriose, mannotetraose and mannopentaose was studied by H-1-NMR. First, the mutarotation of one of the hydrolysis products (mannose) was determined to be 1.7 10(-5) s(-1) at 5 degrees C and pH 5.0. As expected for a family 26 glycoside hydrolase, the hydrolysis was shown to proceed with overall retention of the anomeric configuration. Many 'retaining' enzymes can perform transglycosylation reactions. However, no transglycosylation could be detected. Kinetic constants were calculated from progress curves using computer simulation. It was revealed that the -3 subsite had a greater impact on the apparent k(cat)/K-m ratio (the catalytic efficiency) than the +2 subsite. The beta-anomer of mannotriose was hydrolysed 1000-times more efficiently than the alpha-anomer indicating selectivity for the beta- over the alpha-anomer in the +1 subsite. With background information from the previous published 3D-structure of the truncated variant of Man26A, a structural explanation for the observations is discussed.

Disputation

Nyckelord

  • Chemistry
  • mannose
  • transglycosylation
  • enzyme kinetics
  • beta-mannanase
  • H-1-NMR
  • residue
  • mutarotation

Övriga

Published
Yes
  • ISSN: 1024-2422

Box 117, 221 00 LUND
Telefon 046-222 00 00 (växel)
Telefax 046-222 47 20
lu [at] lu [dot] se

LERU logotype U21 logotype

Fakturaadress: Box 188, 221 00 LUND
Organisationsnummer: 202100-3211
Om webbplatsen