Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

Impaired nerve-mediated relaxation of penile tissue from caveolin-1 deficient mice.

Författare

Summary, in English

Caveolin-1-deficient mice are characterised by a high vascular NO production. Because NO-dependent smooth muscle relaxation is considered to play an important role in penile erection, it was hypothesized that the erectile function would be affected by genetic ablation of caveolae. This study assessed penile erectile mechanisms in caveolin-1 knockout (KO) mice ex vivo. Immunofluorescence confirmed caveolin-1 expression primarily in the endothelium surrounding the sinusoids of the corpus cavernosum, but also in smooth muscle cells of the sinusoidal bundles. In KO mice, caveolin-1 was absent, and the expression of the caveola-associated protein PTRF-Cavin was reduced. Nitric oxide synthase (endothelial and neuronal) and caveolin-3 levels were not affected, and staining of the neuronal marker PGP 9.5 did not disclose any apparent change in the density or pattern of innervation. Moreover, no apparent morphological differences were noted. Functionally, the force response following stimulation of alpha(1)-adrenergic receptors, and the sensitivity to the Rho-kinase inhibitor Y27632, were unaltered, whereas relaxation of alpha(1)-precontracted corpus cavernosum in response to electrical field stimulation and the muscarinic agonist carbachol were impaired. The nitric oxide donor sodium nitroprusside produced less relaxation in KO as compared to wild type corpus cavernosum. We conclude that nerve-mediated dilatation of the corpus cavernosum is impaired in the absence of caveolin-1, and that this is due in part to reduced sensitivity of the target tissue to NO. All in all our data support an important role of caveolin-1 in penile erection.

Publiceringsår

2009

Språk

Engelska

Sidor

399-405

Publikation/Tidskrift/Serie

European Journal of Pharmacology

Volym

602

Dokumenttyp

Artikel i tidskrift

Förlag

Elsevier

Ämne

  • Pharmacology and Toxicology

Status

Published

Forskningsgrupp

  • Vascular Physiology

ISBN/ISSN/Övrigt

  • ISSN: 1879-0712