Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

The effect of alpha-synuclein knockdown on MPP plus toxicity in models of human neurons

Författare

  • Timothy M. Fountaine
  • Lara Lourenco Venda
  • Nicholas Warrick
  • Helen C. Christian
  • Patrik Brundin
  • Keith M. Channon
  • Richard Wade-Martins

Summary, in English

The protein alpha-synuclein is central to the pathophysiology of Parkinson's disease (PD) but its role in the development of neurodegeneration remains unclear. alpha-Synuclein-knockout mice develop without gross abnormality and are resistant to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), a mitochondrial inhibitor widely used to model parkinsonism. Here we show that differentiated human dopaminergic neuron-like cells also have increased resistance to 1-methyl-4-phenylpyridine (MPP+), the active metabolite of MPTP, when alpha-synuclein is knocked down using RNA interference. In attempting to understand how this occurred we found that lowering alpha-synuclein levels caused changes to intracellular vesicles, dopamine transporter (DAT) and vesicular monoamine transporter (VMAT2), each of which is known to be an important component of the early events leading to MPP+ toxicity. Knockdown of alpha-synuclein reduced the availability of DAT on the neuronal surface by 50%, decreased the total number of intracellular vesicles by 37% but increased the density of VMAT2 molecules per vesicle by 2.8-fold. However, these changes were not associated with any reduction in MPP+-induced superoxide production, suggesting that alpha-synuclein knockdown may have other downstream effects which are important. We then showed that alpha-synuclein knockdown prevented MPP+-induced activation of nitric oxide synthase (NOS). Activation of NOS is an essential step in MPTP toxicity and increasing evidence points to nitrosative stress as being important in neurodegeneration. Overall, these results show that as well as having a number of effects on cellular events upstream of mitochondrial dysfunction alpha-synuclein affects pathways downstream of superoxide production, possibly involving regulation of NOS activity.

Publiceringsår

2008

Språk

Engelska

Sidor

2459-2473

Publikation/Tidskrift/Serie

European Journal of Neuroscience

Volym

28

Issue

12

Dokumenttyp

Artikel i tidskrift

Förlag

Wiley-Blackwell

Ämne

  • Neurosciences

Nyckelord

  • nitric oxide synthase
  • MPP
  • interference
  • vesicular monoamine transporter 2
  • RNA
  • dopamine transporter
  • alpha-synuclein

Status

Published

ISBN/ISSN/Övrigt

  • ISSN: 1460-9568