Meny

Javascript verkar inte påslaget? - Vissa delar av Lunds universitets webbplats fungerar inte optimalt utan javascript, kontrollera din webbläsares inställningar.
Du är här

Effects of the properties of the bacterial community on pH adaptation during recolonisation of a humus soil

Författare:
Publiceringsår: 2004
Språk: Engelska
Sidor: 1383-1388
Publikation/Tidskrift/Serie: Soil Biology and Biochemistry
Volym: 36
Nummer: 9
Dokumenttyp: Artikel
Förlag: Elsevier

Sammanfattning

A humus soil with a pH of 4.9 was fumigated with chloroform for 5 h, after which only 1% of the initial bacterial activity remained. Half of the fumigated soil was limed to a pH of 7.5. Both the unlimed soil (UL) and the experimentally limed soil (EL) were inoculated with unfumigated (UL) soil or a field-limed (FL) soil with a pH of 6.1. The pH tolerance and activity of each developing bacterial community were monitored over time in the different treatments (ULUL, ULFL, ELUL and ELFL, subscripts indicate inoculum). The activity and pH tolerance of the resulting bacterial communities were measured using thymidine (TdR) incorporation. To study pH tolerance the pH of the bacterial suspensions (bacteria directly extracted from soil) was altered to pH 8.3 and 3.6 using different pH buffers before TdR incorporation. The logarithmic ratio of TdR incorporation at pH 8.3 and 3.6 was used as a measure of pH tolerance. The source of inoculum had a clear effect in the experimentally limed soil. The tolerance of the bacterial community to high pH increased very rapidly and was always higher in the ELFL soil than in the ELUL soil for up to 78 days of incubation. The bacterial activity was also highest in the ELFL soil for the major duration of the experiment. The source of inoculum had little effect on the unlimed soils, since both the ULUL and ULFL soils had the same low pH tolerance and bacterial activity. The tolerance to high pH was initially higher in the ELUL Soil than that observed in a comparable non-fumigated, limed soil by Pettersson and Baath (2003), indicating that the non-colonised environment following fumigation facilitated a more rapid development of bacterial community tolerance to pH changes.

Disputation

Nyckelord

  • Biology and Life Sciences

Övriga

Published
Yes
  • Microbial Ecology
  • ISSN: 0038-0717

Box 117, 221 00 LUND
Telefon 046-222 00 00 (växel)
Telefax 046-222 47 20
lu [at] lu [dot] se

Fakturaadress: Box 188, 221 00 LUND
Organisationsnummer: 202100-3211
Om webbplatsen