Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

Computational Modeling of the Hematopoietic Erythroid-Myeloid Switch Reveals Insights into Cooperativity, Priming, and Irreversibility

Författare

Summary, in English

Hematopoietic stem cell lineage choices are decided by genetic networks that are turned ON/OFF in a switch-like manner. However, prior to lineage commitment, genes are primed at low expression levels. Understanding the underlying molecular circuitry in terms of how it governs both a primed state and, at the other extreme, a committed state is of relevance not only to hematopoiesis but also to developmental systems in general. We develop a computational model for the hematopoietic erythroid-myeloid lineage decision, which is determined by a genetic switch involving the genes PU.1 and GATA-1. Dynamical models based upon known interactions between these master genes, such as mutual antagonism and autoregulation, fail to make the system bistable, a desired feature for robust lineage determination. We therefore suggest a new mechanism involving a cofactor that is regulated as well as recruited by one of the master genes to bind to the antagonistic partner that is necessary for bistability and hence switch-like behavior. An interesting fallout from this architecture is that suppression of the cofactor through external means can lead to a loss of cooperativity, and hence to a primed state for PU.1 and GATA-1. The PU. 1-GATA-1 switch also interacts with another mutually antagonistic pair, C/EBP alpha-FOG-1. The latter pair inherits the state of its upstream master genes and further reinforces the decision due to several feedback loops, thereby leading to irreversible commitment. The genetic switch, which handles the erythroid-myeloid lineage decision, is an example of a network that implements both a primed and a committed state by regulating cooperativity through recruitment of cofactors. Perturbing the feedback between the master regulators and downstream targets suggests potential reprogramming strategies. The approach points to a framework for lineage commitment studies in general and could aid the search for lineage-determining genes.

Publiceringsår

2009

Språk

Engelska

Publikation/Tidskrift/Serie

PLoS Computational Biology

Volym

5

Issue

1

Dokumenttyp

Artikel i tidskrift

Förlag

Public Library of Science (PLoS)

Ämne

  • Bioinformatics and Systems Biology

Status

Published

ISBN/ISSN/Övrigt

  • ISSN: 1553-7358