Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

Large Eddy Simulation and Experiments of the Auto-Ignition Process of Lean Ethanol / Air Mixture in HCCI Engines

Författare

Summary, in English

Recent experiments and numerical studies have showed that piston geometry has a significant effect on the homogeneous charge compression ignition (HCCI) process. There are two effects generated by the combustor geometry: the geometry affects the flow/turbulence in the cylinder; the geometry also affects the temperature stratification. The temperature stratification is more directly responsible for the observed alteration of the auto-ignition process. To clarify this issue further we present in this paper a study of two engines with the same geometry but difference ways of cooling. Measurement of the two engines~a metal engine and quartz piston engine, both with the same piston bowl geometry~is carried out. Large eddy simulation (LES) is used to simulate the flow, the temperature field and the auto-ignition process in the two engines. The fuel is ethanol with a relative air/fuel ratio of 3.3. It is found that lower temperature stratification is established in the metal engine under similar conditions as the optical quartz engine due to the more effective cooling of the piston in the metal engine configuration. The combustion phasing in the two engines is the same by controlling the intake temperature. Both measurements and LES show a more rapid auto-ignition in the metal engine than in the optical engine with the same piston geometry. This confirms the conclusion that large temperature stratification can decrease the pressure-rise-rate and thereby increase the load of HCCI engines. The dependence of temperature stratification on the wall temperature and intake temperature is systematically studied using LES.

Publiceringsår

2008

Språk

Engelska

Sidor

1110-1119

Publikation/Tidskrift/Serie

SAE International Journal of Fuels and Lubricants

Volym

1

Issue

1

Dokumenttyp

Artikel i tidskrift

Förlag

SAE

Ämne

  • Other Mechanical Engineering
  • Fluid Mechanics and Acoustics

Nyckelord

  • Combustion Engine
  • HCCI
  • Large Eddy Simulation

Status

Published

ISBN/ISSN/Övrigt

  • ISSN: 1946-3952