Du är här

Fast estimation of spatially dependent temporal trends using Gaussian Markov Random fields

Författare:
Publiceringsår: 2009
Språk: Engelska
Sidor: 2885-2896
Publikation/Tidskrift/Serie: Computational statistics and data analysis
Volym: 53
Nummer: 8
Dokumenttyp: Artikel
Förlag: Elsevier

Sammanfattning

There is a need for efficient methods for estimating trends in spatio-temporal Earth Observation data. A suitable model for such data is a space-varying regression model, where the regression coefficients for the spatial locations are dependent. A second order intrinsic Gaussian Markov Random Field prior is used to specify the spatial covariance structure. Model parameters are estimated using the Expectation Maximisation (EM) algorithm, which allows for feasible computation times for relatively large data sets. Results are illustrated with simulated data sets and real vegetation data from the Sahel area in northern Africa. The results indicate a substantial gain in accuracy compared with methods based on independent ordinary least squares regressions for the individual pixels in the data set. Use of the EM algorithm also gives a substantial performance gain over Markov Chain Monte Carlo-based estimation approaches.

Disputation

Nyckelord

  • Mathematics and Statistics

Övriga

Published
Yes
  • ISSN: 0167-9473

Box 117, 221 00 LUND
Telefon 046-222 00 00 (växel)
Telefax 046-222 47 20
lu [at] lu [dot] se

LERU logotype U21 logotype

Fakturaadress: Box 188, 221 00 LUND
Organisationsnummer: 202100-3211
Om webbplatsen