Meny

Javascript is not activated in your browser. This website needs javascript activated to work properly.
Du är här

Post-genomic insights into the plant polysaccharide degradation potential of Aspergillus nidulans and comparison to Aspergillus niger and Aspergillus oryzae

Författare:
  • Pedro M. Coutinho
  • Mikael R. Andersen
  • Katarina Kolenová
  • Patricia A. vanKuyk
  • Isabelle Benoit
  • Birgit S. Gruben
  • Blanca Trejo-Aguilar
  • Hans Visser
  • Piet van Solingen
  • Tiina Pakula
  • Bernard Seiboth
  • Evy Battaglia
  • Guillermo Aguilar-Osorio
  • Jan F. de Jong
  • Robin A. Ohm
  • Mariana Aguilar
  • Bernard Henrissat
  • Jens Nielsen
  • Henrik Stålbrand (Associate professor)
  • Ronald P. de Vries
Publiceringsår: 2009
Språk: Engelska
Sidor: S161-S169
Publikation/Tidskrift/Serie: Fungal Genetics and Biology
Volym: 46
Nummer: Suppl 1
Dokumenttyp: Artikel
Förlag: Elsevier Science B.V

Sammanfattning

The plant polysaccharide degradative potential of Aspergillus nidulans was analysed in detail and compared to that of Aspergillus niger and Aspergillus oryzae using a combination of bioinformatics, physiology and transcriptomics. Manual verification indicated that 28.4% of the A. nidulans ORFs analysed in this study do not contain a secretion signal, of which 40% may be secreted through a non-classical method. While significant differences were found between the species in the numbers of ORFs assigned to the relevant CAZy families, no significant difference was observed in growth on polysaccharides. Growth differences were observed between the Aspergilli and Podospora anserina, which has a more different genomic potential for polysaccharide degradation, suggesting that large genomic differences are required to cause growth differences oil polysaccharides, Differences were also detected between the Aspergilli in the presence Of putative regulatory sequences in the promoters of the ORFs Of this Study and correlation of the presence Of putative XlnR binding sites to induction by xylose was detected for A. niger. These data demonstrate differences at genome content, Substrate specificity of the enzymes and gene regulation in these three Aspergilli, which likely reflect their individual adaptation to their natural biotope. (C) 2008 Elsevier Inc. All rights reserved.

Disputation

Nyckelord

  • Biology and Life Sciences
  • Chemistry
  • Micro array analysis
  • Promoter analysis
  • CAZy
  • Aspergillus
  • Plant polysaccharide degradation
  • XlnR
  • Substrate specificity

Övriga

Published
Yes
  • ISSN: 1087-1845

Box 117, 221 00 LUND
Telefon 046-222 00 00 (växel)
Telefax 046-222 47 20
lu [at] lu [dot] se

Fakturaadress: Box 188, 221 00 LUND
Organisationsnummer: 202100-3211
Om webbplatsen