Du är här

Trimmed moebius inversion and graphs of bounded degree

Författare:
Publiceringsår: 2008
Språk: Engelska
Sidor: 85-96
Publikation/Tidskrift/Serie: STACS 2008: Proceedings of the 25th Annual Symposium on Theoretical Aspects of Computer Science
Dokumenttyp: Konferensbidrag
Förlag: LABRI - Laboratoire Bordelais de Recherche en Informatique

Sammanfattning

We study ways to expedite Yates's algorithm for computing the zeta and Moebius transforms of a function defined on the subset lattice. We develop a trimmed variant of Moebius inversion that proceeds point by point, finishing the calculation at a subset before considering its supersets. For an n-element universe U and a family F of its subsets, trimmed Moebius inversion allows us to compute the number of parkings, coverings, and partitions of U with k sets from F in time within a polynomial factor (in n) of the number of supersets of the members of F. Relying on an intersection theorem of Chung et al. (1986) to bound the sizes of set families, we apply these ideas to well-studied combinatorial optimisation problems on graphs of maximum degree A. In particular, we show how to compute the Domatic Number in time within a polynomial factor of (2(Delta+1) - 2)(n/(Delta+1)) and the Chromatic Number in time within a polynomial factor of (2(Delta+1) - Delta - 1)(n/(Delta+1)) For any constant A, these bounds are 0 ((2 - epsilon)(n)) for epsilon > 0 independent of the number of vertices n.

Disputation

Nyckelord

  • Technology and Engineering

Övriga

25th International Symposium on Theoretical Aspects of Computer Science (STACS 2008)
2008-02-21/2008-02-23
Bordeaux, France
  • VR
Published
  • Exact algorithms
Yes
  • Algorithms

Box 117, 221 00 LUND
Telefon 046-222 00 00 (växel)
Telefax 046-222 47 20
lu [at] lu [dot] se

 

Fakturaadress: Box 188, 221 00 LUND
Organisationsnummer: 202100-3211
Om webbplatsen