Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

Performance predictions of laminar and turbulent heat transfer and fluid flow of heat exchangers having large tube-diameter and large tube-row by artificial neural networks

Författare

Summary, in English

In this work an artificial neural network (ANN) is used to correlate experimentally determined and numerically computed Nusselt numbers and friction factors of three kinds of fin-and-tube heat exchangers having plain fins, slit fins and fins with longitudinal delta-winglet vortex generators with large tube-diameter and large the number of tube rows. First the experimental data for training the network was picked up from the database of nine samples with tube outside diameter of 18 mm, number of tube rows of six, nine, twelve, and Reynolds number between 4000 and 10,000. The artificial neural network configuration under consideration has twelve inputs of geometrical parameters and two outputs of heat transfer Nusselt number and fluid flow friction factor. The commonly-implemented feed-forward back propagation algorithm was used to train the neural network and modify weights. Different networks with various numbers of hidden neurons and layers were assessed to find the best architecture for predicting heat transfer and flow friction. The deviation between the predictions and experimental data was less than 4%. Compared to correlations for prediction, the performance of the ANN-based prediction exhibits ANN superiority. Then the ANN training database was expanded to include experimental data and numerical data of other similar geometries by computational fluid dynamics (CFD) for turbulent and laminar cases with the Reynolds number of 1000-10,000. This in turn indicated the prediction has a good agreement with the combined database. The satisfactory results suggest that the developed ANN model is generalized to predict the turbulent or/and laminar heat transfer and fluid flow of such three kinds of heat exchangers with large tube-diameter and large number of tube rows. Also in this paper the weights and biases corresponding to the neural network architecture are provided so that future research can be carried out. It is recommended that ANNs might be used to predict the performances of thermal systems in engineering applications, especially to model heat exchangers for heat transfer analysis. (C) 2009 Elsevier Ltd. All rights reserved.

Avdelning/ar

Publiceringsår

2009

Språk

Engelska

Sidor

2484-2497

Publikation/Tidskrift/Serie

International Journal of Heat and Mass Transfer

Volym

52

Issue

11-12

Dokumenttyp

Artikel i tidskrift

Förlag

Pergamon Press Ltd.

Ämne

  • Energy Engineering

Nyckelord

  • Correlations
  • tube-diameter and large number of tube rows
  • Large
  • Artificial neural network (ANN)
  • Heat transfer
  • Friction

Status

Published

ISBN/ISSN/Övrigt

  • ISSN: 0017-9310