Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

Enhanced Internal Heat Transfer on the Tip-Wall in a Rectangular Two-Pass Channel (AR=1:2) by Pin-Fin Arrays

Författare

Summary, in English

To improve gas turbine performance, the operating temperature has been increased continuously. However, the heat transferred to the turbine blade is substantially increased as the turbine inlet temperature is increased. Cooling methods are therefore much needed for the turbine blades to ensure a long durability and safe operation. The blade tip region is exposed to the hot gas flows and is difficult to cool. A common way to cool the tip is to use serpentine passages with a 180 turn under the blade tip cap taking advantage of the three-dimensional turning effect and impingement. Increasing internal convective cooling is however required to increase the blade tip life. In this article, enhanced heat transfer of a blade tip has been investigated numerically. The computational models consist of a two-pass channel with a 180 turn and arrays of pin-fins mounted on the tip-cap, and a smooth two-pass channel. Inlet Reynolds numbers range from 100,000 to 600,000. The computations are 3-D, steady, and incompressible. The detailed 3-D fluid flow and heat transfer over the tip surfaces are presented. The overall performance of the two models is evaluated. It is found that due to the combination of turning, impingement, and pin-fin crossflow the heat transfer coefficient of the pin-finned tip might be a factor of 1.84 higher than that of a smooth tip. This augmentation is achieved at the expense of a penalty of pressure drop around 35%. It is suggested that the pin-fins could be used to enhance blade tip heat transfer and cooling.

Avdelning/ar

Publiceringsår

2009

Språk

Engelska

Sidor

739-761

Publikation/Tidskrift/Serie

Numerical Heat Transfer Part A: Applications

Volym

55

Issue

8

Dokumenttyp

Artikel i tidskrift

Förlag

Taylor & Francis

Ämne

  • Energy Engineering

Status

Published

ISBN/ISSN/Övrigt

  • ISSN: 1040-7782