Du är här

A Floquet-Bloch Decomposition of Maxwell's Equations Applied to Homogenization

Författare:
Publiceringsår: 2005
Språk: Engelska
Sidor: 149-171
Publikation/Tidskrift/Serie: Multiscale Modeling & Simulation
Volym: 4
Nummer: 1
Dokumenttyp: Artikel
Förlag: Society for Industrial and Applied Mathematics

Sammanfattning

Using Bloch waves to represent the full solution of Maxwell's equations in periodic media, we study the limit where the material's period becomes much smaller than the wavelength. It is seen that for steady state fields, only a few of the Bloch waves contribute to the full solution. Effective material parameters can be explicitly represented in terms of dyadic products of the mean values of the nonvanishing Bloch waves, providing a new means of homogenization. The representation is valid for an arbitrary wave vector in the first Brillouin zone.

Disputation

Nyckelord

  • Technology and Engineering

Övriga

Published
Yes
  • ISSN: 1540-3459

Box 117, 221 00 LUND
Telefon 046-222 00 00 (växel)
Telefax 046-222 47 20
lu [at] lu [dot] se

LERU logotype U21 logotype

Fakturaadress: Box 188, 221 00 LUND
Organisationsnummer: 202100-3211
Om webbplatsen