Meny

Javascript is not activated in your browser. This website needs javascript activated to work properly.
Du är här

Comparison of temperature effects on soil respiration and bacterial and fungal growth rates

Författare:
Publiceringsår: 2005
Språk: Engelska
Sidor: 49-58
Publikation/Tidskrift/Serie: FEMS Microbiology Ecology
Volym: 52
Nummer: 1
Dokumenttyp: Artikel
Förlag: Elsevier

Sammanfattning

Temperature is an important factor regulating microbial activity and shaping the soil microbial community. Little is known, however, on how temperature affects the most important groups of the soil microorganisms, the bacteria and the fungi, in situ. We have therefore measured the instantaneous total activity (respiration rate), bacterial activity (growth rate as thymidine incorporation rate) and fungal activity (growth rate as acetate-in-ergosterol incorporation rate) in soil at different temperatures (0-45 degrees C). Two soils were compared: one was an agricultural soil low in organic matter and with high pH, and the other was a forest humus soil with high organic matter content and low pH. Fungal and bacterial growth rates had optimum temperatures around 25-30 degrees C, while at higher temperatures lower values were found. This decrease was more drastic for fungi than for bacteria, resulting in an increase in the ratio of bacterial to fungal growth rate at higher temperatures. A tendency towards the opposite effect was observed at low temperatures, indicating that fungi were more adapted to low-temperature conditions than bacteria. The temperature dependence of all three activities was well modelled by the square root (Ratkowsky) model below the optimum temperature for fungal and bacterial growth. The respiration rate increased over almost the whole temperature range, showing the highest value at around 45 degrees C. Thus, at temperatures above 30 degrees C there was an uncoupling between the instantaneous respiration rate and bacterial and fungal activity. At these high temperatures, the respiration rate closely followed the Arrhenius temperature relationship. 2004 Federation of European Microbiological Societies. Published by Elsevier B.V. All rights reserved.

Disputation

Nyckelord

  • Biology and Life Sciences

Övriga

Published
Yes
  • Microbial Ecology
  • ISSN: 0168-6496

Box 117, 221 00 LUND
Telefon 046-222 00 00 (växel)
Telefax 046-222 47 20
lu [at] lu [dot] se

Fakturaadress: Box 188, 221 00 LUND
Organisationsnummer: 202100-3211
Om webbplatsen