Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

On the simulation of cohesive fatigue effects in grain boundaries of a piezoelectric mesostructure

Författare

Summary, in English

Ferroelectric materials offer a variety of new applications in the field of smart structures and intelligent systems. Accordingly, the modelling of these materials constitutes an active field of research. A critical limitation of the performance of such materials is given when electrical, mechanical, or mixed loading fatigue occurs, combined with, for instance, microcracking phenomena. In this contribution, fatigue effects in ferroelectric materials are numerically investigated by utilisation of a cohesive-type approach. In view of finite element-based simulations, the geometry of a natural grain structure, as observed on the so-called meso-level, is represented by an appropriate mesh. While the response of the grains themselves is approximated by coupled continuum elements, grain boundaries are numerically incorporated via so-called cohesive-type or interface elements. These offer a great potential for numerical simulations: as an advantage, they do not result in bad-conditioned systems of equations as compared with the application of standard continuum elements inhering a very high ratio of length and height. The grain boundary behaviour is modelled by cohesive-type constitutive laws, designed to capture fatigue phenomena. Being a first attempt, switching effects are planned to be added to the grain model in the future. Two differently motivated fatigue evolution techniques are applied, the first being appropriate for low-cycle-fatigue, and a second one adequate to simulate high-cycle-fatigue. Subsequent to a demonstration of the theoretical and numerical framework, studies of benchmark boundary value problems with fatigue-motivated boundary conditions are presented.

Avdelning/ar

Publiceringsår

2008

Språk

Engelska

Sidor

4687-4708

Publikation/Tidskrift/Serie

International Journal of Solids and Structures

Volym

45

Issue

17

Dokumenttyp

Artikel i tidskrift

Förlag

Elsevier

Ämne

  • Mechanical Engineering

Status

Published

ISBN/ISSN/Övrigt

  • ISSN: 0020-7683