Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

Enhancement of anaerobic batch digestion of sisal pulp waste by mesophilic aerobic pre-treatment

Författare

Summary, in English

Pre-treatment of sisal pulp prior to its anaerobic digestion was investigated using an activated sludge mixed culture under aerobic conditions in batch bioreactors at 37 degrees C. The progression of aerobic pre-treatment of the residue in relation to the activities of some extracellular hydrolytic enzymes in the slurry was monitored. The highest activity of hydrolytic enzymes was obtained at 9 h of pre-treatment. Filter paper cellulase had a maximum activity of 0.90 IU/ml, while carboxymethyl cellulase, amylase and xylanase were produced to a maximum of about 0.40 IU/ml. The methane yield obtained after anaerobic digestion of the pre-treated pulp ranged between 0.12 and 0.24 m(3) CH4/kg VS added. The highest and lowest values were obtained for 9 and 72 h of pre-treatment, respectively. Nine hours of pre-treatment of sisal pulp prior to anaerobic digestion demonstrated a 26 % higher methane yield when compared to the sisal pulp without pre-treatment. The consortia of microorganisms in activated sludge demonstrated a useful potential in the production of hydrolases acting on major macromolecules of sisal pulp. The fact that a correlation was observed between high enzyme activity and high methane yield at 9h of aerobic pre-treatment suggests that such a short pretreatment period could be an alternative option for increasing solubilization of sisal pulp and promoting methane productivity. (c) 2005 Elsevier Ltd. All rights reserved.

Publiceringsår

2005

Språk

Engelska

Sidor

1569-1575

Publikation/Tidskrift/Serie

Water Research

Volym

39

Issue

8

Dokumenttyp

Artikel i tidskrift

Förlag

Elsevier

Ämne

  • Industrial Biotechnology

Status

Published

ISBN/ISSN/Övrigt

  • ISSN: 1879-2448