Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

Small-angle X-ray scattering, light scattering, and NMR study of PEO-PPO-PEO triblock copolymer/cationic surfactant complexes in aqueous solution

Författare

Summary, in English

The formation of triblock copolymer/surfactant complexes upon mixing a nonionic Pluronic polymer (PEO-PPO-PEO) with a cationic surfactant, hexadecyltrimethylammonium chloride (CTAC), has been studied in dilute aqueous solutions using small-angle X-ray scattering, static and dynamic light scattering, and self-diffusion NMR. The studied copolymer (denoted P123, EO20PO68EO20) forms micelles with a radius of 10 nm and a molecular weight of 7.5 x 101, composed of a hydrophobic PPC-rich core of radius 4 nm and a water swollen PEO corona. The P123/CTAC system has been investigated between 1 and 5 wt % P123 and with varying surfactant concentration up to approximately 170 mM CTAC (or a molar ratio n(CTAC)/n(P123) 19.3). When CTAC is mixed with micellar P123 solutions, two different types of complexes are observed at various CTAC concentrations. At low molar ratios (>= 0.5) a '' P123 micelle-CTAC '' complex is obtained as the CTAC monomers associate noncooperatively with the P123 micelle, forming a spherical complex. Here, an increased interaction between the complexes with increasing CTAC concentration is observed. The interaction has been investigated by determining the structure factor obtained by using the generalized indirect Fourier transformation (GIFT) method. The interaction between the P123 micelle-CTAC complexes was modeled using the Percus-Yevick closure. For the low molar ratios a small decrease in the apparent molecular weight of the complex was obtained, whereas the major effect was the increase in electrostatic repulsion between the complexes. Between molar ratios 1.9 and 9 two coexisting complexes were found, one P123 micelle-CTAC complex and one '' CTAC-P123 '' complex. The latter one consists of one or a few P123 unimers and a few CTAC monomers. As the CTAC concentration increases above a molar ratio of 9, the P123 micelles are broken up and only the CTAC-P123 complex that is slightly smaller than a CTAC micelle exists. The interaction between the P123/CTAC complexes was modeled with the hypernetted-chain closure using a Yukawa type potential in the GIFT analysis, due to the stronger electrostatic repulsion.

Avdelning/ar

Publiceringsår

2005

Språk

Engelska

Sidor

7073-7083

Publikation/Tidskrift/Serie

The Journal of Physical Chemistry Part B

Volym

109

Issue

15

Dokumenttyp

Artikel i tidskrift

Förlag

The American Chemical Society (ACS)

Ämne

  • Physical Chemistry

Status

Published

ISBN/ISSN/Övrigt

  • ISSN: 1520-5207