Meny

Du är här

Modelling reactive solute transport from groundwater to soil surface under evaporation

Författare:
Publiceringsår: 2010
Språk: Engelska
Sidor: 608-617
Publikation/Tidskrift/Serie: Hydrological Processes
Volym: 24
Nummer: 5
Dokumenttyp: Artikel
Förlag: John Wiley & Sons, Ltd

Sammanfattning

Two-stage soil column experiments involving capillary rise and evaporation were conducted to improve understanding of salt and water movement from groundwater to soil surface. In total, 64 soil columns were placed in a tank partly filled with water in order to mimic the groundwater table in soil. Each soil column was analysed by dividing it into 27 segments to analyse pore water and ion distribution in both liquid and solid phases after prescribed time periods. The water and solute transport behaviour in the columns was simulated by a one-dimensional numerical model. The model considers the cation exchange of four cations (Ca2+, Mg2+, Na+ and K+) in both dissolved and exchangeable forms and anion retardation for one anion (SO42-). The Cl- is treated as a conservative solute without retardation. The numerical results of the cation distributions in both liquid and solid phases, anions in the liquid phase, and volumetric water contents were in relatively good agreement with the experimental results. To achieve a better model fit to these experimental results, a variable cation exchange capacity (CEC) distribution may be required. When a simple calculation scheme for evaporation intensity was applied, better predictions in terms of daily variation were achieved. The soil water profile displayed a steady state behaviour approximately 10 days after the start of the experiments. This was in agreement with numerical results and calculated distribution of velocity vectors. The final model includes cation exchange, anion retardation, and unsaturated water flow. Consequently, the model can be applied to study sequential irrigation effects on salt accumulation or reactive transport during major ion concentration changes in groundwater. Copyright (C) 2009 John Wiley & Sons, Ltd.

Disputation

Nyckelord

  • Earth and Environmental Sciences
  • salinization
  • cation exchange
  • evaporation
  • soil column experiment
  • reactive transport modelling

Övriga

Published
  • MERGE
Yes
  • ISSN: 0885-6087

Box 117, 221 00 LUND
Telefon 046-222 00 00 (växel)
Telefax 046-222 47 20
lu [at] lu [dot] se

Fakturaadress: Box 188, 221 00 LUND
Organisationsnummer: 202100-3211
Om webbplatsen