Meny

Javascript verkar inte påslaget? - Vissa delar av Lunds universitets webbplats fungerar inte optimalt utan javascript, kontrollera din webbläsares inställningar.
Du är här

A linear algebra approach to minimal convolutional encoders

Författare:
Publiceringsår: 1993
Språk: Engelska
Sidor: 1219-1233
Publikation/Tidskrift/Serie: IEEE Transactions on Information Theory
Volym: 39
Nummer: 4
Dokumenttyp: Artikel i tidskrift
Förlag: IEEE--Institute of Electrical and Electronics Engineers Inc.

Sammanfattning

The authors review the work of G.D. Forney, Jr., on the algebraic structure of convolutional encoders upon which some new results regarding minimal convolutional encoders rest. An example is given of a basic convolutional encoding matrix whose number of abstract states is minimal over all equivalent encoding matrices. However, this encoding matrix can be realized with a minimal number of memory elements neither in controller canonical form nor in observer canonical form. Thus, this encoding matrix is not minimal according to Forney's definition of a minimal encoder. To resolve this difficulty, the following three minimality criteria are introduced: minimal-basic encoding matrix, minimal encoding matrix, and minimal encoder. It is shown that all minimal-basic encoding matrices are minimal and that there exist minimal encoding matrices that are not minimal-basic. Several equivalent conditions are given for an encoding matrix to be minimal. It is proven that the constraint lengths of two equivalent minimal-basic encoding matrices are equal one by one up to a rearrangement. All results are proven using only elementary linear algebra

Nyckelord

  • Electrical Engineering, Electronic Engineering, Information Engineering

Övriga

Published
  • ISSN: 0018-9448

Box 117, 221 00 LUND
Telefon 046-222 00 00 (växel)
Telefax 046-222 47 20
lu [at] lu.se

Fakturaadress: Box 188, 221 00 LUND
Organisationsnummer: 202100-3211
Om webbplatsen