Du är här

Glycemic Trend Prediction Using Empirical Model Identification

Författare:
Publiceringsår: 2009
Språk: Engelska
Sidor: 3501-3506
Dokumenttyp: Konferensbidrag

Sammanfattning

Using methods of system identification and prediction, we investigate near-future prediction of individual specific T1DM blood glucose dynamics with the purpose of a decision-making tool development in diabetes treatment. Two strategies were approached: Firstly, Kalman estimators based on identified state-space models were designed; Secondly, direct identification of ARX- and ARMAX-based predictors was done.
Predictions over 30 minutes look-ahead were capable to track
glucose variation even in sensible ranges for estimation data,
but not on validation data.

Disputation

Nyckelord

  • Technology and Engineering
  • subspace-based identification
  • biological systems

Övrigt

Joint 48th IEEE Conference on Decision and Control and 28th Chinese Control Conference
2009-12-16
Shanghai, China
Published
Yes
  • LCCC

Box 117, 221 00 LUND
Telefon 046-222 00 00 (växel)
Telefax 046-222 47 20
lu [at] lu [dot] se

Fakturaadress: Box 188, 221 00 LUND
Organisationsnummer: 202100-3211
Om webbplatsen

LERU logo U21 logo