Javascript is not activated in your browser. This website needs javascript activated to work properly.
Du är här

On the Kalman-Yakubovich-Popov Lemma for Stabilizable Systems

Publiceringsår: 2001
Språk: Engelska
Sidor: 1089-1093
Publikation/Tidskrift/Serie: IEEE Transactions on Automatic Control
Volym: 46
Nummer: 7
Dokumenttyp: Artikel
Förlag: IEEE


The Kalman-Yakubovich-Popov (KYP) lemma has been a cornerstone in system theory and network analysis and synthesis. It relates an analytic property of a square transfer matrix in the frequency domain to a set of algebraic equations involving parameters of a minimal realization in time domain. This note proves that the KYP lemma is also valid for realizations which are stabilizable and observable



  • Technology and Engineering
  • transfer function matrices
  • time-domain analysis
  • system theory
  • stability
  • network analysis
  • graph theory
  • frequency-domain analysis
  • Popov criterion
  • circuit stability


  • ISSN: 0018-9286

Box 117, 221 00 LUND
Telefon 046-222 00 00 (växel)
Telefax 046-222 47 20
lu [at] lu [dot] se

Fakturaadress: Box 188, 221 00 LUND
Organisationsnummer: 202100-3211
Om webbplatsen