Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

Unusual response characteristics of pheromone-specific olfactory receptor neurons in the Asian corn borer moth, Ostrinia furnacalis

Författare

  • T Takanashi
  • Y Ishikawa
  • Peter A. Anderson
  • Y P Huang
  • Christer Löfstedt
  • S Tatsuki
  • Bill S Hansson

Summary, in English

Male moth pheromone-detecting receptor neurons are known to be highly specific and very sensitive. We investigated physiological and behavioral responses to female sex pheromone components in male Ostrinia furnacalis moths (Lepidoptera: Crambidae). Using recordings from a cut-sensillum technique, trichoid sensilla could be grouped into four physiological types (1-4), according to the response of receptor neurons to the two major pheromone components, (E)-12- and (Z)-12-tetradecenyl acetate (E12- and Z12-14: OAc). These types could subsequently be characterized as four subtypes (A-D) depending on neural responses to pheromone components from various sister species of O. furnacalis, (Z)-9-, (E)-11- and (Z)-11- tetradecenyl acetate.

The peripheral pheromone detection system of O. furnacalis is different to that of other moths. A large majority of the neurons investigated responded to both of the two principal pheromone components. Dose-response and cross-adaptation studies showed that olfactory receptor neurons with large amplitude action potentials responded equally well to E12- and Z12-14: OAc in sensillum types 1-3. Field experiments showed that O. furnacalis males are sensitive to ratios of E12- and Z12-14: OAc and that (Z)-9- tetradecenyl acetate acts as a behavioral antagonist. O. furnacalis males thus display an unusual coding system for odors involved in sexual communication, mainly built on less specific neurons, but still have the ability to detect and respond to the correct female blend. We hypothesize that the pheromone detection system of O. furnacalis consists of two parts, where one is devoted to high sensitivity to Delta 12 isomers of tetradecenyl acetate, E12- and Z12-14: OAc and the other to highly specific responses to the E12- or Z12-14: OAc. The unusual feature is thus that a large part of the system is devoted to sensitivity and only a minor part to selectivity. This could be explained by the fact that no other moth species are known to use E12- and/or Z12-14: OAc and that no strong selective pressure to increase selectivity between the isomers has been determined.

Publiceringsår

2006

Språk

Engelska

Sidor

4946-4956

Publikation/Tidskrift/Serie

Journal of Experimental Biology

Volym

209

Issue

24

Dokumenttyp

Artikel i tidskrift

Förlag

The Company of Biologists Ltd

Ämne

  • Zoology
  • Biological Sciences

Nyckelord

  • sex pheromone communication
  • nubilalis
  • Ostrinia
  • electrophysiology
  • single sensillum recording
  • olfaction
  • behavioral antagonist
  • field
  • trapping
  • electron microscopy

Status

Published

Projekt

  • Evolutionary mechanisms of pheromone divergence in Lepidoptera

Forskningsgrupp

  • Pheromone Group

ISBN/ISSN/Övrigt

  • ISSN: 1477-9145