Du är här

Deoxyribonucleoside kinases activate nucleoside antibiotics in severe pathogenic bacteria.

Författare:
Publiceringsår: 2007
Språk: Engelska
Sidor: 2726-2732
Publikation/Tidskrift/Serie: Antimicrobial agents and chemotherapy
Volym: 51
Nummer: 8
Dokumenttyp: Artikel
Förlag: American Society for Microbiology

Sammanfattning

Common bacterial pathogens are becoming progressively more resistant to traditional antibiotics, representing a major public-health crisis. Therefore, there is a need for a variety of antibiotics with alternative modes of action. In our study, several nucleoside analogs were tested against pathogenic staphylococci and streptococci. We show that pyrimidine-based nucleoside analogs, like 3'-azido-3'-deoxythymidine (AZT) and 2',2'-difluoro-2'deoxycytidine (gemcitabine), are specifically activated by the endogenous bacterial deoxyribonucleoside kinases, leading to cell death. Deoxyribonucleoside kinase-deficient Escherichia coli strains become highly susceptible to nucleoside analogs when they express recombinant kinases from Staphylococcus aureus or Streptococcus pyogenes. We further demonstrate that recombinant S. aureus deoxyadenosine kinase efficiently phosphorylates the anticancer drug gemcitabine in vitro and is therefore the key enzyme in the activation pathway. When adult mice were infected intraperitoneally with a fatal dose of S. pyogenes strain AP1 and afterwards received gemcitabine, they failed to develop a systemic infection. Nucleoside analogs may therefore represent a promising alternative for combating pathogenic bacteria.

Disputation

Nyckelord

  • Medicine and Health Sciences
  • Biology and Life Sciences

Övriga

Published
Yes
  • ISSN: 0066-4804

Box 117, 221 00 LUND
Telefon 046-222 00 00 (växel)
Telefax 046-222 47 20
lu [at] lu [dot] se

 

Fakturaadress: Box 188, 221 00 LUND
Organisationsnummer: 202100-3211
Om webbplatsen