Meny

Du är här

Estimation and prediction for stochastic blockstructures

Författare:
Publiceringsår: 2001
Språk: Engelska
Sidor: 1077-1087
Publikation/Tidskrift/Serie: Journal of the American Statistical Association
Volym: 96
Nummer: 455
Dokumenttyp: Artikel
Förlag: American Statistical Association

Sammanfattning

A statistical approach to a posteriori blockmodeling for digraphs and valued digraphs is proposed. The probability model assumes that the vertices of the digraph are partitioned into several unobserved (latent) classes and that the probability distribution of the relation between two vertices depends only on the classes to which they belong. A Bayesian estimator based on Gibbs sampling is proposed. The basic model is not identified, because class labels are arbitrary. The resulting identifiability problems are solved by restricting inference to the posterior distributions of invariant functions of the parameters and the vertex class membership. In addition, models are considered where class labels are identified by prior distributions for the class membership of some of the vertices. The model is illustrated by an example from the social networks literature (Kapferer's tailor shop).

Disputation

Nyckelord

  • Mathematics and Statistics
  • Gibbs sampling
  • social network
  • latent class model
  • mixture model
  • cluster analysis
  • Colored graph

Övriga

Published
Yes
  • ISSN: 0162-1459

Box 117, 221 00 LUND
Telefon 046-222 00 00 (växel)
Telefax 046-222 47 20
lu [at] lu [dot] se

Fakturaadress: Box 188, 221 00 LUND
Organisationsnummer: 202100-3211
Om webbplatsen