Du är här

On the exact bit error probability for Viterbi decoding of convolutional codes

Publiceringsår: 2011
Språk: Engelska
Dokumenttyp: Konferensbidrag

Sammanfattning

Forty years ago, Viterbi published upper bounds on both the first error event (burst error) and bit error probabilities for Viterbi decoding of convolutional codes. These bounds were derived using a signal flow chart technique for convolutional encoders. In 1995, Best et al. published a formula for the exact bit error probability for Viterbi decoding of the rate R=1/2, memory m=1 convolutional encoder with generator matrix G(D)=(1 1+D) when used to communicate over the binary symmetric channel. Their method was later extended to the rate R=1/2, memory m=2 generator matrix G(D)=(1+D^2 1+D+D^2) by Lentmaier et al.
In this paper, we shall use a different approach to derive the exact bit error probability. We derive and solve a general matrix recurrent equation connecting the average information weights at the current and previous steps of the Viterbi decoding. A closed form expression for the exact bit error probability is given. Our general solution yields the expressions for the exact bit error probability obtained by Best et al. (m=1) and Lentmaier et al. (m=2) as special cases.

Disputation

Nyckelord

  • Technology and Engineering

Övriga

Information Theory and Applications Workshop
2011-02-06/2011-02-11
San Diego
Published
Yes
  • Informations- och kommunikationsteori
  • Information Theory

Box 117, 221 00 LUND
Telefon 046-222 00 00 (växel)
Telefax 046-222 47 20
lu [at] lu [dot] se

LERU logotype U21 logotype

Fakturaadress: Box 188, 221 00 LUND
Organisationsnummer: 202100-3211
Om webbplatsen