Javascript is not activated in your browser. This website needs javascript activated to work properly.
Du är här

Double-Hamming based QC LDPC codes with large minimum distance

Publiceringsår: 2011
Språk: Engelska
Dokumenttyp: Konferensbidrag


A new method using Hamming codes to construct base matrices of (J, K)-regular LDPC convolutional codes with large free distance is presented. By proper labeling the corresponding base matrices and tailbiting these parent convolutional codes to given lengths, a large set of quasi-cyclic (QC) (J, K)-regular LDPC block codes with large minimum distance is obtained. The corresponding Tanner graphs have girth up to 14. This new construction is compared with two previously known constructions of QC (J, K)-regular LDPC block codes with large minimum distance exceeding (J+1)!. Applying all three constructions, new QC (J, K)-regular block LDPC codes with J=3 or 4, shorter codeword lengths and/or better distance properties than those of previously known codes are presented.



  • Technology and Engineering


International Symposium on Information Theory (ISIT)
St. Petersburg
  • Information Theory

Box 117, 221 00 LUND
Telefon 046-222 00 00 (växel)
Telefax 046-222 47 20
lu [at] lu [dot] se

Fakturaadress: Box 188, 221 00 LUND
Organisationsnummer: 202100-3211
Om webbplatsen