Meny

Javascript verkar inte påslaget? - Vissa delar av Lunds universitets webbplats fungerar inte optimalt utan javascript, kontrollera din webbläsares inställningar.
Du är här

Another look at the exact bit error probability for Viterbi decoding of convolutional codes

Publiceringsår: 2011
Språk: Engelska
Dokumenttyp: Konferensbidrag

Sammanfattning

In 1995, Best et al. published a formula for the exact bit error probability for Viterbi decoding of the rate R=1/2, memory m=1 (2-state) convolutional encoder with generator matrix G(D)=(1 1+D) when used to communicate over the binary symmetric channel. Their method was later extended to the rate R=1/2, memory m=2 (4-state) generator matrix G(D)=(1+D^2 1+D+D^2) by Lentmaier et al.

In this paper, we shall use a different approach to derive the exact bit error probability. We derive and solve a general matrix recurrent equation connecting the average information weights at the current and previous steps of the Viterbi decoding. A closed form expression for the exact bit error probability is given. Our general solution yields the expressions for the exact bit error probability obtained by Best et al. (m=1) and Lentmaier et al. (m=2) as special cases. The exact bit error probability for the binary symmetric channel is determined for various 8 and 16 states encoders including both polynomial and rational generator matrices for rates R=1/2 and R=2/3. Finally, the exact bit error probability is calculated for communication over the quantized additive white Gaussian noise channel.

Disputation

Nyckelord

  • Technology and Engineering

Övriga

International Mathematical Conference '50 Years Of IPPI'
2011-07-25/2011-07-29
Moscow, Russia
Published
Yes
  • Information Theory

Box 117, 221 00 LUND
Telefon 046-222 00 00 (växel)
Telefax 046-222 47 20
lu [at] lu [dot] se

Fakturaadress: Box 188, 221 00 LUND
Organisationsnummer: 202100-3211
Om webbplatsen