Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

Carbon cycling in subarctic tundra; seasonal variation in ecosystem partitioning based on in situ 14C pulse-labelling

Författare

  • Maria Olsrud
  • Torben Christensen

Summary, in English

Carbon assimilation and allocation were studied in a tundra ecosystem in northern Scandinavia. Seasonal variation in the below-ground carbon allocation to dissolved organic carbon (DOC), coarse-, fine-, and hair roots was investigated using in situ C-14 pulse-labelling, adding 2-3 MBq (CO2)-C-14, dm(-2) to the above-ground vegetation. Combining the allocation data with regression models of the seasonal carbon flux made it possible to estimate a temporally explicit ecosystem carbon allocation budget. The ecosystem was a net source of CO2, losing on average 0.97 gC m(-2) d(-1) to the atmosphere, with little variation through the season. There was, however, significant temporal variation in partitioning of recently assimilated carbon. Allocation to below-ground compartments over 32 days following labelling increased from 18% in June to 55% in September. Above-ground allocation showed the opposite trend. Hair roots and DOC were strong sinks in the autumn. Transport of newly assimilated carbon occurred rapidly throughout the season, C-14 appearing in all sampled pools within 4 h of labelling. The seasonal variation in carbon partitioning observed in this study has implications for the residence time of assimilated carbon in the ecosystem. A relatively greater allocation to rapidly decomposing pools, such as hair roots and DOC, would tend to reduce incorporation into woody tissue, increasing the overall rate of carbon cycling and decreasing ecosystem storage. The results of this study will be of value for building and validating mechanistic models of ecosystem carbon flow in tundra and subarctic ecosystems. (C) 2003 Elsevier Ltd. All fights reserved.

Publiceringsår

2004

Språk

Engelska

Sidor

245-253

Publikation/Tidskrift/Serie

Soil Biology & Biochemistry

Volym

36

Issue

2

Dokumenttyp

Artikel i tidskrift

Förlag

Elsevier

Ämne

  • Physical Geography

Nyckelord

  • environmental control
  • seasonal budget
  • fluxes
  • carbon
  • hair root
  • C-14 pulse-labelling
  • below-ground allocation
  • tundra

Status

Published

ISBN/ISSN/Övrigt

  • ISSN: 0038-0717