Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

Photofragmentation laser-induced fluorescence imaging in premixed flames

Författare

Summary, in English

Two-dimensional measurements of primarily hydroperoxyl radicals (HO2) are, for the first time, demonstrated in flames. The measurements are performed in different Bunsen-type premixed flames (H-2/O-2. CH4/O-2, and CH4/air) using photofragmentation laser-induced fluorescence (PF-LIF). Photofragmentation is done by laser radiation at 266 nm, and the generated OH photofragments are probed through fluorescence induced by a laser tuned to the Q(1)(5) transition at 282.75 nm. The signal due to naturally occurring OH radicals, recorded by having the photolysis laser blocked, is subtracted, providing an image that reflects the concentration of OH fragments generated by photolysis, and hence the presence of primarily HO2, but also smaller contributions from H2O2 and, for the methane flames, CH3O2. For the methane flames the measured radial profiles of OH photofragments and natural OH agree well with corresponding profiles calculated for laminar, one-dimensional, premixed flames using CHEMKIN-II with the Konnov detailed C/H/N/O reaction mechanism. An interfering signal contribution is observed in the product zone of the methane flames. It is concluded that the major source for the interference is most likely hot CO2, from which 0 atoms are produced by photolysis, and OH is rapidly formed as the O atoms react with H2O and H-2. This conclusion is supported by the fact that the interference is absent for the hydrogen flame, but appears when CO2 is seeded into the flame. Another strong indication is that the Konnov mechanism predicts a similar buildup of OH after photolysis. (C) 2011 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

Publiceringsår

2011

Språk

Engelska

Sidor

1908-1919

Publikation/Tidskrift/Serie

Combustion and Flame

Volym

158

Issue

10

Dokumenttyp

Artikel i tidskrift

Förlag

Elsevier

Ämne

  • Atom and Molecular Physics and Optics

Nyckelord

  • Combustion diagnostics
  • Photofragmentation
  • Laser-induced fluorescence
  • Hydrogen peroxide
  • Hydroperoxyl radical
  • Methyl peroxy radical

Status

Published

ISBN/ISSN/Övrigt

  • ISSN: 0010-2180