Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

Influence of geometric design of alternate partial root-zone subsurface drip irrigation (APRSDI) with brackish water on soil moisture and salinity distribution

Författare

Summary, in English

In alternate partial root-zone irrigation (APRI) a significant amount of irrigation water can be saved without considerable yield reduction. In this paper, Hydrus-2D/3D was used to investigate the impact of geometric design of alternate partial root-zone subsurface drip irrigation (APRSDI) with brackish water for growing tomato on soil moisture and salinity distribution. Three inter-plant emitter distances (IPED; 20, 30, and 40 cm), two emitter depths (10 and 20 cm), and three irrigation water salinity levels (0, 1, and 2 dS m-1) were used to implement the proposed simulation scenarios in loamy sand soil during a 40-day simulation period. The simulation results showed that higher soil moisture content was found beneath the plant trunk in case of 20 cm (short IPED) and near the domain border in case of 30 and 40 cm IPED. Short IPED guarantees more water in the maximum root density zone. A deeper wetting front occurred for deep emitter depth, while the wetting front reached the soil surface for shallow emitter depth. Salinity results revealed that as irrigation water salinity increased, the salinity in the top soil increased. In addition, the salinity at the soil surface increased as IPED and emitter depth increased. Higher root water uptake rates were recorded in the case of 20 cm IPED while the emitter depth did not show any considerable effect on root water uptake rates. Moreover, the applied irrigation water was fully consumed by the plant in case of short IPED. Emitter depth and salinity of irrigation water had negligible effect on amount of irrigation water extracted by plant roots and percolated amount below the bottom boundary of the flow domain. Overall, short IPED is recommended in APRSDI with or without brackish irrigation water regardless of the emitter depth.

Publiceringsår

2012

Språk

Engelska

Sidor

182-190

Publikation/Tidskrift/Serie

Agricultural Water Management

Volym

103

Dokumenttyp

Artikel i tidskrift

Förlag

Elsevier

Ämne

  • Water Engineering
  • Other Social Sciences

Nyckelord

  • Alternate partial root-zone subsurface drip irrigation
  • Emitter depth
  • Inter-plant emitter distances
  • Soil salinity
  • Hydrus-2D/3D
  • Egypt.

Status

Published

ISBN/ISSN/Övrigt

  • ISSN: 1873-2283