Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

OH*-chemiluminescence during autoignition of hydrogen with air in a pressurised turbulent flow reactor

Författare

Summary, in English

Autoignition of hydrogen in air was studied in a turbulent flow reactor using OH*-chemiluminescence. High-speed imaging was used to visualise the formation of auto-ignition kernels in the flow, and to analyse the conditions under which temporary stabilisation of the flame kernels occurred. The experiments were carried out at temperatures of 800-850 K, pressures of 0.8-1.2 MPa and an equivalence ratio of phi = 0.25. Measurements of the autoignition delays yielded values in the range of tau = 210-447 ms. The autoignition delay results indicated that, over the range of conditions studied, ignition delays reduced with decreasing pressure. This observation contradicted homogeneous gas-phase kinetic calculations, which predicted an increase in autoignition delay with decreasing pressure. If the kinetic model was altered to include surface reactions at the reactor walls, the calculations could be qualitatively reconciled with the experimental data, suggesting that wall reactions had a significant influence on autoignition delays. Copyright (C) 2014, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

Publiceringsår

2014

Språk

Engelska

Sidor

12166-12181

Publikation/Tidskrift/Serie

International Journal of Hydrogen Energy

Volym

39

Issue

23

Dokumenttyp

Artikel i tidskrift

Förlag

Elsevier

Ämne

  • Atom and Molecular Physics and Optics
  • Energy Engineering

Nyckelord

  • Autoignition
  • Hydrogen
  • OH-chemiluminescence
  • Surface reactions
  • Kinetic
  • modelling
  • Flow reactor

Status

Published

ISBN/ISSN/Övrigt

  • ISSN: 1879-3487