Du är här

On Data-driven Multistep Subspace-based Linear Predictors

Publiceringsår: 2011
Språk: Engelska
Dokumenttyp: Konferensbidrag
Övrig information: Key=cescon2011a


The focus of this contribution is the estimation of multi-step-ahead
linear multivariate predictors of the output making use of finite
input-output data sequences. Different strategies will be presented, the common factor being the exploitations of geometric operations on appropriate subspaces spanned by the data. In order to test the capabilities of the proposed methods in predicting new data, a real-life example, namely, the case of blood glucose prediction in Type 1 Diabetes patients, is provided.



  • Technology and Engineering
  • Subspace-identification
  • prediction error methods
  • biological systems


18th IFAC World Congress
Milano, Italy
  • DIAdvisor
  • LCCC

Box 117, 221 00 LUND
Telefon 046-222 00 00 (växel)
Telefax 046-222 47 20
lu [at] lu [dot] se

Fakturaadress: Box 188, 221 00 LUND
Organisationsnummer: 202100-3211
Om webbplatsen

LERU logo U21 logo