Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

Contribution of tissue composition and structure to mechanical response of articular cartilage under different loading geometries and strain rates

Författare

Summary, in English

Mechanical function of articular cartilage in joints between articulating bones is dependent on the composition and structure of the tissue. The mechanical properties of articular cartilage are traditionally tested in compression using one of the three loading geometries, i.e., confined compression, unconfined compression or indentation. The aim of this study was to utilize a composition-based finite element model in combination with a fractional factorial design to determine the importance of different cartilage constituents in the mechanical response of the tissue, and to compare the importance of the tissue constituents with different loading geometries and loading rates. The evaluated parameters included water and collagen fraction as well as fixed charge density on cartilage surface and their slope over the tissue thickness. The thicknesses of superficial and middle zones, as based on the collagen orientation, were also included in the evaluated parameters. A three-level resolution V fractional factorial design was used. The model results showed that inhomogeneous composition plays only a minor role in indentation, though that role becomes more significant in confined compression and unconfined compression. In contrast, the collagen architecture and content had a more profound role in indentation than with two other loading geometries. These differences in the mechanical role of composition and structure between the loading geometries were emphasized at higher loading rates. These findings highlight how the results from mechanical tests of articular cartilage under different loading conditions are dependent upon tissue composition and structure.

Publiceringsår

2010

Språk

Engelska

Sidor

237-245

Publikation/Tidskrift/Serie

Biomechanics and Modeling in Mechanobiology

Volym

9

Issue

2

Dokumenttyp

Artikel i tidskrift

Förlag

Springer

Ämne

  • Mechanical Engineering

Nyckelord

  • Fibril-reinforced
  • Fractional factorial design
  • Articular cartilage
  • Collagen
  • Fixed charge density
  • Finite element analysis

Status

Published

ISBN/ISSN/Övrigt

  • ISSN: 1617-7940