Meny

Javascript verkar inte påslaget? - Vissa delar av Lunds universitets webbplats fungerar inte optimalt utan javascript, kontrollera din webbläsares inställningar.
Du är här

Accelerated gradient methods and dual decomposition in distributed model predictive control

Författare:
Publiceringsår: 2013
Språk: Engelska
Sidor: 829-833
Publikation/Tidskrift/Serie: Automatica
Volym: 49
Nummer: 3
Dokumenttyp: Artikel
Förlag: PERGAMON-ELSEVIER SCIENCE LTD
Ytterligare information: Key= gis2012aut

Sammanfattning

We propose a distributed optimization algorithm for mixed
L_1/L_2-norm optimization based on accelerated gradient methods using dual decomposition. The algorithm achieves convergence rate O(1/k^2), where k is the iteration number, which significantly improves the convergence rates of existing duality-based distributed optimization algorithms that achieve O(1/k). The performance of the developed algorithm is evaluated on randomly generated optimization problems arising in distributed model predictive control (DMPC). The evaluation shows that, when the problem data is sparse and large-scale, our algorithm can outperform current state-of-the-art optimization software CPLEX and MOSEK.

Disputation

Nyckelord

  • Technology and Engineering

Övriga

Published
  • LCCC
Yes
  • LCCC
  • ISSN: 0005-1098

Box 117, 221 00 LUND
Telefon 046-222 00 00 (växel)
Telefax 046-222 47 20
lu [at] lu [dot] se

Fakturaadress: Box 188, 221 00 LUND
Organisationsnummer: 202100-3211
Om webbplatsen