Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

Redefinition and global estimation of basal ecosystem respiration rate

Författare

  • Wenping Yuan
  • Yiqi Luo
  • Xianglan Li
  • Shuguang Liu
  • Guirui Yu
  • Tao Zhou
  • Michael Bahn
  • Andy Black
  • Ankur R. Desai
  • Alessandro Cescatti
  • Barbara Marcolla
  • Cor Jacobs
  • Jiquan Chen
  • Mika Aurela
  • Christian Bernhofer
  • Bert Gielen
  • Gil Bohrer
  • David R. Cook
  • Danilo Dragoni
  • Allison L. Dunn
  • Damiano Gianelle
  • Thomas Gruenwald
  • Andreas Ibrom
  • Monique Y. Leclerc
  • Anders Lindroth
  • Heping Liu
  • Luca Belelli Marchesini
  • Leonardo Montagnani
  • Gabriel Pita
  • Mirco Rodeghiero
  • Abel Rodrigues
  • Gregory Starr
  • Paul C. Stoy

Summary, in English

Basal ecosystem respiration rate (BR), the ecosystem respiration rate at a given temperature, is a common and important parameter in empirical models for quantifying ecosystem respiration (ER) globally. Numerous studies have indicated that BR varies in space. However, many empirical ER models still use a global constant BR largely due to the lack of a functional description for BR. In this study, we redefined BR to be ecosystem respiration rate at the mean annual temperature. To test the validity of this concept, we conducted a synthesis analysis using 276 site-years of eddy covariance data, from 79 research sites located at latitudes ranging from similar to 3 degrees S to similar to 70 degrees N. Results showed that mean annual ER rate closely matches ER rate at mean annual temperature. Incorporation of site-specific BR into global ER model substantially improved simulated ER compared to an invariant BR at all sites. These results confirm that ER at the mean annual temperature can be considered as BR in empirical models. A strong correlation was found between the mean annual ER and mean annual gross primary production (GPP). Consequently, GPP, which is typically more accurately modeled, can be used to estimate BR. A light use efficiency GPP model (i.e., EC-LUE) was applied to estimate global GPP, BR and ER with input data from MERRA (Modern Era Retrospective-Analysis for Research and Applications) and MODIS (Moderate resolution Imaging Spectroradiometer). The global ER was 103 Pg C yr (-1), with the highest respiration rate over tropical forests and the lowest value in dry and high-latitude areas.

Publiceringsår

2011

Språk

Engelska

Publikation/Tidskrift/Serie

Global Biogeochemical Cycles

Volym

25

Dokumenttyp

Artikel i tidskrift

Förlag

American Geophysical Union (AGU)

Ämne

  • Physical Geography

Status

Published

ISBN/ISSN/Övrigt

  • ISSN: 0886-6236