Du är här

Dimer-T(3) reconstruction of the Sm/Si(100)(2 x 3) surface studied by high-resolution photoelectron spectroscopy and density functional theory calculations

Publiceringsår: 2011
Språk: Engelska
Publikation/Tidskrift/Serie: Physical Review B
Volym: 84
Nummer: 24
Dokumenttyp: Artikel
Förlag: American Physical Society


Silicon dimer-containing reconstructions on Si(100) can be induced by submonolayer amounts of rare earth (RE) metals. The tilt of dimer bonds in such reconstructions can be controlled by the coverage and electronic properties of RE adsorbates. In this study, we have utilized improved high-resolution photoelectron spectroscopy with the synchrotron radiation and density functional theory (DFT) calculations to exploit the structural and electronic properties of the Sm/Si(100)(2 x 3) system. A careful analysis of photoelectron spectra, in combination with DFT calculations of surface core-level shifts for silicon atoms in energetically plausible structural models, has allowed us to establish the favorable atomic configuration of Sm/Si(100)(2 x 3) with a buckled Si dimer and to explain characteristic features of Si 2p line shape in detail. It is shown that the dimer buckling leads to a significant core-level binding-energy splitting of the first-layer Si atoms, affecting the lower-binding-energy region of Si 2p spectra drastically. An interpretation of the Si 2p line shape for RE/Si(100)(2 x 3) that is based on combined initial state and complete screening data is suggested. The mechanism underlying the buckling and symmetrization of silicon dimers in RE/Si(100) reconstructions is discussed.



  • Physics and Astronomy


  • ISSN: 1098-0121

Box 117, 221 00 LUND
Telefon 046-222 00 00 (växel)
Telefax 046-222 47 20
lu [at] lu [dot] se

Fakturaadress: Box 188, 221 00 LUND
Organisationsnummer: 202100-3211
Om webbplatsen

LERU logo U21 logo