Meny

Javascript verkar inte påslaget? - Vissa delar av Lunds universitets webbplats fungerar inte optimalt utan javascript, kontrollera din webbläsares inställningar.
Du är här

BEAST decoding of block codes obtained via convolutional codes

Publiceringsår: 2005
Språk: Engelska
Sidor: 1880-1891
Publikation/Tidskrift/Serie: IEEE Transactions on Information Theory
Volym: 51
Nummer: 5
Dokumenttyp: Artikel
Förlag: Institute of Electrical and Electronics Engineers

Sammanfattning

BEAST is a bidirectional efficient algorithm for searching trees. In this correspondence, BEAST is extended to maximum-likelihood (ML) decoding of block codes obtained via convolutional codes. First it is shown by simulations that the decoding complexity of BEAST is significantly less than that of the Viterbi algorithm. Then asymptotic upper bounds on the BEAST decoding complexity for three important ensembles of codes are derived. They verify BEAST's high efficiency compared to other algorithms. For high rates, the new asymptotic bound for the best ensemble is in fact better than previously known bounds.

Disputation

Nyckelord

  • Technology and Engineering
  • bidirectional search of trees
  • asymptotical decoding complexity
  • decoding of block codes
  • decoding
  • convolutional codes
  • maximum-likelihood (ML)

Övriga

Published
Yes
  • ISSN: 0018-9448

Box 117, 221 00 LUND
Telefon 046-222 00 00 (växel)
Telefax 046-222 47 20
lu [at] lu [dot] se

Fakturaadress: Box 188, 221 00 LUND
Organisationsnummer: 202100-3211
Om webbplatsen