Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

Molecularly imprinted polymers targeting quercetin in high-temperature aqueous solutions

Författare

Summary, in English

Molecularly imprinted polymers (MIPs) targeting quercetin were prepared from 4-vinylpyridine and ethylene dimethacrylate (EDMA) under various solvent systems with the aim to form MIPs with high recognition for the quercetin molecule in aqueous systems at high temperature. A MIP prepared from the three-component solvent mixture of THF/H2O/MeOH showed potential in its application for the determination of quercetin in plants (onion). The polymer particles before and after washing were characterized by infrared spectroscopy and thermogravimetric analysis. Surface morphology was recorded by scanning electron microscopy. The binding capacity of the MIPs was investigated at 25 and 84 degrees C. respectively, in batch mode. Parameters, including the influence of pH, extraction time and binding capacity, were evaluated. The slopes for the effect of extraction time revealed that the mass transfer of the analytes was higher at 84 degrees C than at 25 degrees C. Also, the binding capacity for the most promising MIP and its corresponding NIP was higher at 84 degrees C. The binding capacity for the MIP was similar to 30 mu mol g(-1) at 25 degrees C and similar to 120 mu mol g(-1) at 84 degrees C, while for the corresponding NIP, it was similar to 15 and similar to 90 mu mol g(-1), at 25 and 84 degrees C, respectively. A demonstration of MIP selectivity at higher temperature using standard solutions of selected flavonols showed that the MIP still retained its selectivity for quercetin. Similar selectivity was observed when preliminary application studies on aqueous yellow onion extracts were investigated. (C) 2012 Elsevier B.V. All rights reserved.

Publiceringsår

2012

Språk

Engelska

Sidor

15-23

Publikation/Tidskrift/Serie

Journal of Chromatography A

Volym

1230

Dokumenttyp

Artikel i tidskrift

Förlag

Elsevier

Ämne

  • Organic Chemistry

Nyckelord

  • Extraction
  • High temperature
  • Molecular imprinting
  • Quercetin
  • Water
  • Yellow onion

Status

Published

ISBN/ISSN/Övrigt

  • ISSN: 0021-9673