Meny

Du är här

Chips on wafers, or packing rectangles into grids

Författare:
Publiceringsår: 2005
Språk: Engelska
Sidor: 95-111
Publikation/Tidskrift/Serie: Computational Geometry
Volym: 30
Nummer: 2
Dokumenttyp: Artikel
Förlag: Elsevier

Sammanfattning

A set of rectangles S is said to be gridpacked if there exists a rectangular grid (not necessarily regular) such that every rectangle lies in the grid and there is at most one rectangle of S in each cell. The area of a grid packing is the area of a minimal bounding box that contains all the rectangles in the grid packing. We present an approximation algorithm that given a set S of rectangles and a real epsilon constant epsilon > 0 produces a grid packing of S whose area is at most (1 + epsilon) times larger than an optimal grid packing in polynomial time. If epsilon is chosen large enough the running time of the algorithm will be linear. We also study several interesting variants, for example the smallest area grid packing containing at least k less than or equal to n rectangles, and given a region A grid pack as many rectangles as possible within A Apart from the approximation algorithms we present several hardness results.

Disputation

Nyckelord

  • Technology and Engineering
  • computational geometry
  • approximation algorithms
  • packing rectangles

Övriga

Published
  • VR 2002-4049
Yes
  • ISSN: 0925-7721

Box 117, 221 00 LUND
Telefon 046-222 00 00 (växel)
Telefax 046-222 47 20
lu [at] lu [dot] se

Fakturaadress: Box 188, 221 00 LUND
Organisationsnummer: 202100-3211
Om webbplatsen