Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

Model sophistication in relation to scales in snowmelt runoff modeling

Författare

Summary, in English

Snowmelt induced runoff from river basins is usually successfully simulated using a simple degree-day approach and conceptual rainfall-runoff models. Fluctuations within the day can not be described by such crude approaches. In the present paper, it is investigated which degree of sophistication is required in snow models and runoff models to resolve the basin runoff from basins of different character, and also how snow models and runoff models must adapt to each other. Models of different degree of sophistication are tested on basins ranging from 6,000 km(2) down to less than 1 km(2). It is found that for large basins it is sufficient to use a very simple runoff module and a degree day approach, but that the snow model has to be distributed related to land cover and topography. Also for small forested basins, where most of the stream flow is of groundwater origin, the degree-day method combined with a conceptual runoff model reproduces the snowmelt induced runoff well. Where overland flow takes place, a high resolution snow model is required for resolving the runoff fluctuations at the basin outlet.

Publiceringsår

2000

Språk

Engelska

Sidor

267-286

Publikation/Tidskrift/Serie

Nordic Hydrology

Volym

31

Issue

4-5

Dokumenttyp

Artikel i tidskrift

Ämne

  • Water Engineering

Status

Published

ISBN/ISSN/Övrigt

  • ISSN: 0029-1277