Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

Quantitative proteomics targeting classes of motif-containing peptides using immunoaffinity-based mass spectrometry.

Författare

Summary, in English

The development of high-performance technology platforms for generating detailed protein expression profiles, or protein atlases, is essential. Recently, we presented a novel platform that we termed global proteome survey (GPS), where we combined the best features of affinity proteomics and mass spectrometry, to probe any proteome in a species independent manner while still using a limited set of antibodies. We used so called context-independent-motif-specific antibodies, directed against short amino acid motifs. This enabled enrichment of motif-containing peptides from a digested proteome, which then were detected and identified by mass spectrometry. In this study, we have demonstrated the quantitative capability, reproducibility, sensitivity, and coverage of the GPS technology by targeting SILAC-labeled yeast cultures cultivated in glucose or ethanol. The data showed that a wide range of motif-containing peptides (proteins) could be detected, identified, and quantified in a highly reproducible manner. On average, each of six different motif-specific antibodies was found to target about 75 different motif-containing proteins. Furthermore, peptides originating from proteins spanning in abundance from over a million down to less than 50 copies per cell, could be targeted. It is worth noting that a significant set of peptides previously not reported in the PeptideAtlas database was among the profiled targets. The quantitative data corroborated well with the corresponding data generated after conventional SCX fractionation of the same samples. Finally, several differentially expressed proteins, with both known and unknown functions, many relevant for the central carbon metabolism, could be detected in the glucose- versus ethanol-cultivated yeast. Taken together, the study demonstrated the potential of our immunoaffinity-based mass spectrometry platform for reproducible quantitative proteomics targeting classes of motif-containing peptides.

Avdelning/ar

Publiceringsår

2012

Språk

Engelska

Sidor

342-354

Publikation/Tidskrift/Serie

Molecular & Cellular Proteomics

Volym

11

Issue

8

Dokumenttyp

Artikel i tidskrift

Förlag

American Society for Biochemistry and Molecular Biology

Ämne

  • Immunology in the medical area

Status

Published

ISBN/ISSN/Övrigt

  • ISSN: 1535-9484