Meny

Du är här

Modelling of nonlinear effects and the response of ultrasound contrast micro bubbles: simulation and experiment

Författare:
  • A Kvikliene
  • R Jurkonis
  • M Ressner
  • L Hoff
  • Tomas Jansson
  • B Janerot-Sjoberg
  • A Lukosevicius
  • P Ask
Publiceringsår: 2004
Språk: Engelska
Sidor: 301-307
Publikation/Tidskrift/Serie: Proceedings of Ultrasonics International 2003 (Ultrasonics)
Volym: 42
Nummer: 1-9
Dokumenttyp: Konferensbidrag
Förlag: Elsevier Science B.V.

Sammanfattning

The propagation of diagnostic ultrasonic imaging pulses in tissue and their interaction with contrast micro bubbles is a very complex physical process, which we assumed to be separable into three stages: pulse propagation in tissue, the interaction of the pulse with the contrast bubble, and the propagation of the scattered echo. The model driven approach is used to gain better knowledge of the complex processes involved. A simplified way of field simulation is chosen due to the complexity of the task and the necessity to estimate comparative contributions of each component of the process. Simulations are targeted at myocardial perfusion estimation. A modified method for spatial superposition of attenuated waves enables simulations of low intensity pulse pressure fields from weakly focused transducers in a nonlinear, attenuating, and liquid-like biological medium. These assumptions enable the use of quasi-linear calculations of the acoustic field. The simulations of acoustic bubble response are carried out with the Rayleigh-Plesset equation with the addition of radiation damping. Theoretical simulations with synthesised and experimentally sampled pulses show that the interaction of the excitation pulses with the contrast bubbles is the main cause of nonlinear scattering, and a 2-3 dB increase of second harmonic amplitude depends on nonlinear distortions of the incident pulse. (C) 2004 Elsevier B.V. All rights reserved.

Disputation

Nyckelord

  • Medicine and Health Sciences
  • contrast agents
  • simulation
  • nonlinear
  • ultrasound

Övriga

Ultrasonics International 2003
30 June - 3 July 2003
Granada
Published
Yes
  • ISSN: 0041-624X

Box 117, 221 00 LUND
Telefon 046-222 00 00 (växel)
Telefax 046-222 47 20
lu [at] lu [dot] se

Fakturaadress: Box 188, 221 00 LUND
Organisationsnummer: 202100-3211
Om webbplatsen