Meny

Javascript verkar inte påslaget? - Vissa delar av Lunds universitets webbplats fungerar inte optimalt utan javascript, kontrollera din webbläsares inställningar.
Du är här

Superpolynomial growth in the number of attractors in Kauffman networks (conference report)

Författare:
Publiceringsår: 2003
Språk: Engelska
Sidor: 5051-5061
Publikation/Tidskrift/Serie: Acta Physica Polonica B
Volym: 34
Nummer: 10
Dokumenttyp: Artikel
Ytterligare information: Conference report: Workshop on Random Geometry Optimization of Network Flows, MAY 15-17, 2003 KRAKOW, POLAND

Sammanfattning

The Kauffman model describes a particularly simple class of random Boolean networks. Despite the simplicity of the model, it exhibits complex behavior and has been suggested as a model for real world network problems. This work is based on an earlier paper where we introduced a novel approach to analyzing attractors in random Boolean networks. Applying this approach to Kauffman networks, we prove that the average number of attractors grows faster than any power law with system size.

Disputation

Nyckelord

  • Biology and Life Sciences
  • Physics and Astronomy

Övriga

Published
Yes
  • ISSN: 1509-5770
  • ISSN: 0587-4254

Box 117, 221 00 LUND
Telefon 046-222 00 00 (växel)
Telefax 046-222 47 20
lu [at] lu [dot] se

Fakturaadress: Box 188, 221 00 LUND
Organisationsnummer: 202100-3211
Om webbplatsen