Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

Ring chromosomes, breakpoint clusters, and neocentromeres in sarcomas.

Författare

  • Gemma Macchia
  • Karolin Hansén Nord
  • Monica Zoli
  • Stefania Purgato
  • Pietro D'Addabbo
  • Christopher W Whelan
  • Lucia Carbone
  • Giovanni Perini
  • Fredrik Mertens
  • Mariano Rocchi
  • Clelia Tiziana Storlazzi

Summary, in English

Gene amplification is relatively common in tumors. In certain subtypes of sarcoma, it often occurs in the form of ring and/or giant rod-shaped marker (RGM) chromosomes whose mitotic stability is frequently rescued by ectopic novel centromeres (neocentromeres). Little is known about the origin and structure of these RGM chromosomes, including how they arise, their internal organization, and which sequences underlie the neocentromeres. To address these questions, 42 sarcomas with RGM chromosomes were investigated to detect regions prone to double strand breaks and possible functional or structural constraints driving the amplification process. We found nine breakpoint cluster regions potentially involved in the genesis of RGM chromosomes, which turned out to be significantly enriched in poly-pyrimidine traits. Some of the clusters were located close to genes already known to be relevant for sarcomas, thus indicating a potential functional constraint, while others mapped to transcriptionally inactive chromatin domains enriched in heterochromatic sites. Of note, five neocentromeres were identified after analyzing 13 of the cases by fluorescent in situ hybridization. ChIP-on-chip analysis with antibodies against the centromeric protein CENP-A showed that they were a patchwork of small genomic segments derived from different chromosomes, likely joint to form a contiguous sequence during the amplification process. © 2014 Wiley Periodicals, Inc.

Avdelning/ar

Publiceringsår

2015

Språk

Engelska

Sidor

156-167

Publikation/Tidskrift/Serie

Genes, Chromosomes and Cancer

Volym

54

Issue

3

Dokumenttyp

Artikel i tidskrift

Förlag

John Wiley & Sons Inc.

Ämne

  • Medical Genetics

Status

Published

ISBN/ISSN/Övrigt

  • ISSN: 1045-2257